Scopoletin

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Strukturformel
Scopoletin
Allgemeines
Name Scopoletin
Andere Namen
  • 7-Hydroxy-6-methoxychromen-2-on
  • Gelseminsäure
  • Chrysatropsäure
  • 6-Methylesculetin
  • Murrayetin
  • Scopoletol
  • Methylesculetin
  • 6-O-Methylesculetin
  • 7-Hydroxy-5-methoxycoumarin
  • 6-Methoxyumbelliferon
Summenformel C10H8O4
Kurzbeschreibung

beiges Pulver[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 92-61-5
EG-Nummer 202-171-9
ECHA-InfoCard 100.001.975
PubChem 5280460
ChemSpider 4444113
Wikidata Q2472366
Eigenschaften
Molare Masse 192,17 g·mol−1
Aggregatzustand

fest[1]

Schmelzpunkt

203–205 °C[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[1]
Gefahrensymbol

Achtung

H- und P-Sätze H: 315​‐​319​‐​335
P: 261​‐​305+351+338[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

Scopoletin ist ein Cumarin, das als sekundärer Pflanzenstoff weit verbreitet ist. Es kommt in mindestens 50 Arten vor und ist möglicherweise das häufigste Cumarin in Pflanzen.[2] Es ist strukturell eng verwandt mit Scoparon. Es ist das Aglycon der Glycoside Scopolin und Fabiatrin.

Vorkommen[Bearbeiten | Quelltext bearbeiten]

Krainer Tollkraut (Scopolia carniolica).

Scopoletin kommt unter anderem in den Wurzeln der Gattung Scopolia vor, wie z. B. Scopolia carniolica[3] und Scopolia japonica, aber auch in Chicorée, in Artemisia scoparia, in den Wurzeln und Blättern der Brennnessel (Urtica dioica), in der Passionsblume, in Brunfelsia, in Viburnum prunifolium, in Solanum nigrum,[4] und in Kleinhovia hospita.

Weiterhin kommt es in Arabidopsis thaliana[5], Saat-Hafer, Pflaume, Sonnenblume[6], Mallotus resinosus[7], Tabak[8], Maniok[9] und der Himmelblauen Prunkwinde[10] vor.

Scopoletin wurde auch in Essig,[11] manchen Whiskies und in Löwenzahnkaffee nachgewiesen.

Biosynthese[Bearbeiten | Quelltext bearbeiten]

Die Biosynthese in Maniok wurde intensiv untersucht. (E)-Zimtsäure, die aus Phenylalanin entsteht, ist hier ein Vorläufer von Scopoletin und dem Glucosid Scopolin. Diese wird enzymatisch zur (Z)-Zimtsäure isomerisiert.[9]

In Tabak verläuft die Biosynthese ausgehend von Phenylalanin vermutlich über die Coenzym-A-Addukte der Kaffeesäure, Ferulasäure und 6'-Hydroxyferulasäure.[12]

Biologische Bedeutung[Bearbeiten | Quelltext bearbeiten]

Scopoletin ist ein Phytoalexin, das Pflanzen zur Verteidigung gegen Pathogene dient.[12]

Die Biosynthese von Scopoletin in verschiedenen Pflanzen nimmt in Stresssituationen zu, z. B. bei Tabak durch Einwirkung von Methyljasmonat oder 2,4-Dichlorphenoxyessigsäure und bei virusbefallenen Tabak- und Kartoffelpflanzen.[6][8][12] Scopolin wirkt fungizid gegen Sclerotina sclerotiorum (Gattung Sklerotienbecherlinge) und Sonnenblumen, die bei einer Infektion verstärkt Scopolin produzierten, waren deutlich resistenter als andere.[13] Ebenso wurde bei der Himmelblauen Prunkwinde nachgewiesen, dass sie nach einer Pilzinfektion mit Fusarium oxysporum Scopoletin und Scopolin akkumuliert.[10]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Scopoletin wurde in silico als möglicher Inhibitor der Acetylcholinesterase identifiziert. Die Wirkung hat sich bei Versuchen in vitro und in vivo (an Ratten) bestätigt.[3]

Verwendung[Bearbeiten | Quelltext bearbeiten]

Scopoletin wird in der Biochemie zur Proteinfärbung eingesetzt.[14]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d e Datenblatt Scopoletin, ≥99% bei Sigma-Aldrich, abgerufen am 9. Dezember 2015 (PDF).
  2. Frank A. Einhellig, Elroy L. Rice, Paul G. Risser, Simon H. Wender: Effects of Scopoletin on Growth, CO 2 Exchange Rates, and Concentration of Scopoletin, Scopolin, and Chlorogenic Acids in Tobacco, Sunflower, and Pigweed. In: Bulletin of the Torrey Botanical Club. Band 97, Nr. 1, Januar 1970, S. 22, doi:10.2307/2483987.
  3. a b Judith M. Rollinger, Ariane Hornick, Thierry Langer, Hermann Stuppner, Helmut Prast: Acetylcholinesterase Inhibitory Activity of Scopolin and Scopoletin Discovered by Virtual Screening of Natural Products. In: Journal of Medicinal Chemistry. Band 47, Nr. 25, 1. Dezember 2004, S. 6248–6254, doi:10.1021/jm049655r.
  4. Zhao Y, Liu F, Lou HX: [Studies on the chemical constituents of Solanum nigrum]. In: Zhong Yao Cai. 33. Jahrgang, Nr. 4, 2010, S. 555–556, PMID 20845784 (chinesisch).
  5. Y. O. Ahn, B.-i. Shimizu, K. Sakata, D. Gantulga, Z. Zhou, D. R. Bevan, A. Esen: Scopolin-hydrolyzing -glucosidases in roots of Arabidopsis. In: Plant and Cell Physiology. Band 51, Nr. 1, 1. Januar 2010, S. 132–143, doi:10.1093/pcp/pcp174.
  6. a b Frank A. Einhellig, Elroy L. Rice, Paul G. Risser, Simon H. Wender: Effects of Scopoletin on Growth, CO 2 Exchange Rates, and Concentration of Scopoletin, Scopolin, and Chlorogenic Acids in Tobacco, Sunflower, and Pigweed. In: Bulletin of the Torrey Botanical Club. Band 97, Nr. 1, Januar 1970, S. 22, doi:10.2307/2483987.
  7. Ma J, Jones SH, Hecht SM: A coumarin from Mallotus resinosus that mediates DNA cleavage. In: J Nat Prod. 67. Jahrgang, Nr. 9, 2004, S. 1614–1616, PMID 15387675.
  8. a b Manisha Sharan, Goro Taguchi, Keiichi Gonda, Takashi Jouke, Makoto Shimosaka, Nobuaki Hayashida, Mitsuo Okazaki: Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. In: Plant Science. Band 132, Nr. 1, Februar 1998, S. 13–19, doi:10.1016/S0168-9452(97)00260-4.
  9. a b Soad A.L. Bayoumi, Michael G. Rowan, Ian S. Blagbrough, John R. Beeching: Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: The E-Z-isomerisation stage. In: Phytochemistry. Band 69, Nr. 17, Dezember 2008, S. 2928–2936, doi:10.1016/j.phytochem.2008.09.023.
  10. a b Bun-ichi Shimizu, Hisashi Miyagawa, Tamio Ueno, Kanzo Sakata, Ken Watanabe, Kei Ogawa: Morning Glory Systemically Accumulates Scopoletin and Scopolin after Interaction with Fusarium oxysporum. In: Zeitschrift für Naturforschung C. Band 60, Nr. 1-2, 1. Februar 2005, S. 83–90, doi:10.1515/znc-2005-1-216.
  11. Analysis of polyphenolic compounds of different vinegar samples. Miguel Carrero Gálvez, Carmelo García Barroso and Juan Antonio Pérez-Bustamante, Zeitschrift für Lebensmitteluntersuchung und -Forschung A, Volume 199, Number 1, pages 29–31, doi:10.1007/BF01192948
  12. a b c J. Li, J. Wu: Scopolin, a Glycoside Form of the Phytoalexin Scopoletin, Is Likely Involved in the Resistance of Nicotiana Attenuata Against Alternaria Alternata. In: Journal of Plant Pathology. Band 98, Nr. 3, 2016, S. 641–644.
  13. E. Prats, M. E. Bazzalo, A. León, J. V. Jorrín: Fungitoxic effect of scopolin and related coumarins on Sclerotinia sclerotiorum. A way to overcome sunflower head rot. In: Euphytica. Band 147, Nr. 3, Februar 2006, S. 451–460, doi:10.1007/s10681-005-9045-8.
  14. Y. Chen, J. Yang, Z. Wang, X. Wu, F. Wang: Scopoletine as fluorescence probe for determination of protein. In: Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. Band 66, Nummer 3, März 2007, S. 686–690, doi:10.1016/j.saa.2006.04.012, PMID 16859971.